已知椭圆的右焦点为
,离心率
,
是椭圆上的两动点,动点
满足
(其中实数
为常数).
(1)求椭圆标准方程;
(2)当,且直线
过
点且垂直于
轴时,求过
三点的外接圆方程;
(3)若直线与
的斜率乘积
,问是否存在常数
,使得动点
满足
,其中
,若存在求出
的值,若不存在,请说明理由.
(本小题满分12分) 已知、
为椭圆的左右焦点,点
为其上一点,且有
(1)求椭圆的标准方程;
(2)是否存在直线与椭圆交于M,两点,且线段使MN的中点为
,若存在,求直线的方程;若不存在,说明理由?
(本小题满分12分)已知F1、F2是椭圆的两个焦点,P是椭圆上任意一点.
(1)若∠F1PF2=,求△F1PF2的面积;
(2)求的最大值和最小值.
(本小题满分12分)已知椭圆经过点A(0,4),离心率为
;
(1)求椭圆C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
(本小题满分12分)已知椭圆上一点M的纵坐标为2.
(1)求M的横坐标;
(2)求过点M且与共焦点的椭圆方程.
(本小题满分12分)已知恒成立,
方程
表示焦点在
轴上的椭圆,若命题“
且
”为假,求实数
的取值范围.