如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).
(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并写出A1点的坐标,A1( , );
(2)画出“基本图形”关于x轴的对称图形A2B2C2D2,并写出B2点的坐标,B2( , ).
2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取 名学生进行测试,并对成绩(百分制)进行整理,信息如下:
a.成绩频数分布表:
成绩 (分) |
|
|
|
|
|
频数 |
|
|
|
|
|
b.成绩在 这一组的是(单位:分):
根据以上信息,回答下列问题:
(1)在这次测试中,成绩的中位数是 ______分,成绩不低于 分的人数占测试人数的百分比为 ______.
(2)这次测试成绩的平均数是 分,甲的测试成绩是 分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.
(1)计算: ;
(2)化简: .
如图1,在矩形 中, ,点 是边 上一个动点(不与点 重合),连接 ,将 沿 折叠,得到 ;再以 为圆心, 的长为半径作半圆,交射线 于 ,连接 并延长交射线 于 ,连接,设 .
(1)求证: 是半圆 的切线:
(2)当点 落在 上时,求 的值;
(3)当点 落在 下方时,设 与 面积的比值为 ,确定 与 之间的函数关系式;
(4)直接写出:当半圆 与 的边有两个交点时, 的取值范围.
某企业投入 万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量 (万件)与售价 (元/件)之间满足函数关系式 ,第一年除 万元外其他成本为 元/件.
(1)求该产品第一年的利润 (万元)与售价x之间的函数关系式;
(2)该产品第一年利润为 万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降 元/件.
①求该产品第一年的售价;
②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
小华同学学习函数知识后,对函数 通过列表、描点、连线,画出了如图1所示的图象.
x |
… |
|
|
|
|
|
|
|
|
|
|
|
… |
|
y |
… |
|
|
|
|
|
|
|
|
﹣4 |
|
|
|
… |
请根据图象解答:
(1)【观察发现】
①写出函数的两条性质:__________; __________;
②若函数图象上的两点 满足 ,则 一定成立吗? _____.(填“一定”或“不一定”)
(2)【延伸探究】如图2,将过 两点的直线向下平移 个单位长度后,得到直线 与函数 的图象交于点 ,连接 .
①求当 时,直线 的解析式和 的面积;
②直接用含 的代数式表示 的面积.