在平面直角坐标系中,动点
到两点
、
的距离之和等于4.设点
的轨迹为
.
(1)求曲线的方程;
(2)设直线与
交于
、
两点,若
,求
的值.
已知等比数列的首项
,公比
,设数列
的通项公式
,数列
,
的前
项和分别记为
,
,试比较
与
的大小.
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.
(1)当=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.
如图给定两个长度为1的平面向量和
,它的夹角为
,点
在以
为圆心的圆弧
上变动,若
,其中
,求
的最大值.
设函数.
(1)求函数最大值和最小正周期;
(2)设为
的三个内角,若
,求
.
已知,其中
.
(1)求证:与
互相垂直;
(2)若与
大小相等,求
.