游客
题文

已知椭圆的右焦点为为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为
(1)求椭圆的方程;
(2)是否存在直线交椭圆于两点, 且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在平面直角坐标系中,设△ABC的顶点分别为,圆M是△ABC的外接圆,直线的方程是
(1)求圆M的方程;
(2)证明:直线与圆M相交;
(3)若直线被圆M截得的弦长为3,求直线的方程.

四棱锥P﹣ABCD中,底面ABCD是边长为8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.

(1)求四棱锥P﹣ABCD的体积;
(2)求证:AD⊥PB.

已知,不等式恒成立,:椭圆的焦点在轴上.若命题p∧q为真命题,求实数m的取值范围.

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.

(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

如图,已知椭圆(a>b>0)的离心率,过点的直线与原点的距离为

(1)求椭圆的方程.
(2)已知定点,若直线与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号