已知函数在
上是增函数.
⑴求实数的取值范围
;
⑵当为
中最小值时,定义数列
满足:
,且
,
用数学归纳法证明,并判断
与
的大小.
已知以原点
为中心,
为右焦点的双曲线
的离心率
.
(Ⅰ)求双曲线
的标准方程及其渐近线方程;
(Ⅱ)如题图,已知过点
的直线
与过点
(其中
)的直线
:
的交点
在双曲线
上,直线
与双曲线的两条渐近线分别交于
、
两点,求
的值.
如图,四棱锥
中,底面
为矩形,
底面
,
,点
是棱
的中点.
(Ⅰ)证明:
平面
;
(Ⅱ)若
,求二面角
已知函数
(其中常数
),
是奇函数.
(Ⅰ)求
的表达式;
(Ⅱ)讨论
的单调性,并求
在区间[1,2]上的最大值和最小值.
设
的内角
的对边长分别为
,且
.
(Ⅰ) 求
的值;
(Ⅱ)求
的值.
在甲、乙等6个单位参加的一次"唱读讲传"演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:
(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;
(Ⅱ)甲、乙两单位的演出序号不相邻的概率.