游客
题文

如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”.
(1)已知:如图1,在△ABC中,∠C=90°,
求证:△ABC是“匀称三角形”;
(2)在平面直角坐标系xoy中,如果三角形的一边在x轴上,且这边的中线恰好等于这边的长,我们又称这个三角形为“水平匀称三角形”.如图2,现有10个边长是1的小正方形组成的长方形区域记为G, 每个小正方形的顶点称为格点,A(3,0),B(4,0),若C、D(C、D两点与O不重合)是x轴上的格点,且点C在点A的左侧.在G内使△PAC与△PBD都是“水平匀称三角形”的点P共有几个?其中是否存在横坐标为整数的点P,如果存在请求出这个点P的坐标,如果不存在请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

如图,已知点 E F 分别是平行四边形 ABCD 对角线 BD 所在直线上的两点,连接 AE CF ,请你添加一个条件,使得 ΔABE ΔCDF ,并证明.

某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按 A B C ( A 等:成绩大于或等于80分; B 等:成绩大于或等于60分且小于80分; C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:

(1)请把条形统计图补充完整;

(2)扇形统计图中 A 等所在的扇形的圆心角等于  度;

(3)若九年级有1000名学生,请你用此样本估计体育测试在60分以上(包括60分)的学生人数.

如图,已知: BAC = EAD AB = 20 . 4 AC = 48 AE = 17 AD = 40

求证: ΔABC ΔAED

如图,已知直角坐标系中, A B D 三点的坐标分别为 A ( 8 , 0 ) B ( 0 , 4 ) D ( 1 , 0 ) ,点 C 与点 B 关于 x 轴对称,连接 AB AC

(1)求过 A B D 三点的抛物线的解析式;

(2)有一动点 E 从原点 O 出发,以每秒2个单位的速度向右运动,过点 E x 轴的垂线,交抛物线于点 P ,交线段 CA 于点 M ,连接 PA PB ,设点 E 运动的时间为 t ( 0 < t < 4 ) 秒,求四边形 PBCA 的面积 S t 的函数关系式,并求出四边形 PBCA 的最大面积;

(3)抛物线的对称轴上是否存在一点 H ,使得 ΔABH 是直角三角形?若存在,请直接写出点 H 的坐标;若不存在,请说明理由.

如图所示,以 ΔABC 的边 AB 为直径作 O ,点 C O 上, BD O 的弦, A = CBD ,过点 C CF AB 于点 F ,交 BD 于点 G ,过 C CE / / BD AB 的延长线于点 E

(1)求证: CE O 的切线;

(2)求证: CG = BG

(3)若 DBA = 30 ° CG = 4 ,求 BE 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号