已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.
⑴求圆C的方程;
⑵设Q为圆C上的一个动点,求的最小值;
⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,90
、
90,100
、
100,110
、
110,120
、
120,130
,由此得到两个班测试成绩的频率分布直方图:
(I)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分 |
成绩不小于100分 |
合计 |
|
甲班 |
![]() |
![]() |
50 |
乙班 |
![]() |
![]() |
50 |
合计 |
![]() |
![]() |
100 |
(II)现从乙班50人中任意抽取3人,记表示抽到测试成绩在[100,120
的人数,求
的分布列和数学期望
.
附:,其中
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.204 |
6.635 |
7.879 |
10.828 |
已知函数.
(1)求函数的单调递增区间;
(2)记△的内角
、
、
所对的边长分别为
、
、
,若
,△
的面积
,
,求
的值.
已知点(1,2)是函数的图象上一点,数列
的前
项和是
.
(1)求数列的通项公式;
(2)若,求数列
的前
项和
)已知函数满足对一切
都有
,且
,当
时有
.
(1)求的值;
(2)判断并证明函数在
上的单调性;
(3)解不等式:
已知圆O:和定点
,由圆O外一点
向圆O引切线
,切点为
,且满足
.
(1)求实数间满足的等量关系;
(2)求线段长的最小值;
(3)若以为圆心所作的圆P与圆0有公共点,试求半径取最小值时圆P的方程.