某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是
元,月平均销售1000件.通过改进工艺,产品的成本不变,质量和技术的含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
.设改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)当销售价提高的百分率为0.1时,月利润是多少?
(2)写出与
的函数关系式;
(3)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
(1)若抛物线过直线与圆
的交点, 且顶点在原点,坐标轴为对称轴,求抛物线的方程.
(2)已知双曲线与椭圆共焦点,它们的离心率之和为
,求双曲线方程.
已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.
已知命题“若
则二次方程
没有实根”.
(1)写出命题的否命题; (2)判断命题
的否命题的真假, 并证明你的结论
如图,四棱锥的底面是正方形,
,点E在棱PB上.
(1)求证:平面;
(2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;