已知函数R).
(1)若 ,求曲线
在点
处的的切线方程;
(2)若 对任意
恒成立,求实数a的取值范围.
(本小题满分14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)确定函数在定义域上的单调性,并证明你的结论;
(Ⅲ)若时
恒成立,求正整数
的最大值.
(本小题满分14分)如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)探究是否是个定值,若是,求出这个定值;若不是,请说明理由.
(本小题满分13分)如图,在四棱锥中,
平面
,底面
是菱形,
.
(Ⅰ)求证:平面
(Ⅱ)若求
与
所成角的余弦值;
(Ⅲ)当平面与平面
垂直时,求
的长.
(本小题满分13分)设数列的前
项和为
,并且满足
,
.
(Ⅰ)求;
(Ⅱ)猜想的通项公式,并用数学归纳法加以证明.
(本小题满分13分) 我国政府对PM2.5采用如下标准:
三明市环保局从180天的市区PM2.5监测数据中,随机抽取l0天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(Ⅰ)求这10天数据的中位数.
(Ⅱ)从这已检测到的l0天数据中任取3天数据,记表示空气质量达到一级的天数,求
的分布列;
(Ⅲ)以这10天的PM2.5日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一级.