游客
题文

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的平面角的余弦值.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

(本小题满分12分)
椭圆与直线相交于两点,且为坐标原点).(Ⅰ)求证:等于定值;
(Ⅱ)当椭圆的离心率时,求椭圆长轴长的取值范围.

(本小题满分12分)
如图,在三棱柱中,所有的棱长都为2,.
(Ⅰ)求证:
(Ⅱ)当三棱柱的体积最大时,求平面与平面所成的锐角的余弦值.

(本小题满分12分)
某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一个球,直到取到红球为止,求甲取球次数的数学期望;
(Ⅱ)若甲、乙两人各从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由.

中,分别为角的对边,且满足.
(Ⅰ)求角的值;
(Ⅱ)若,设角的大小为的周长为,求的最大值.

设函数,其中,将的最小值记为
(1)求的表达式;
(2)讨论在区间内的单调性并求极值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号