已知函数,其中
为实数,
(1)若,求函数
的最小值;
(2)若方程在
上有实数解,求
的取值范围;
(3)设…,
均为正数,且
,求证:
.
(本小题满分10分)选修4-4:坐标系与参数方程
已知圆锥曲线(
为参数)和定点
,
、
是此圆锥曲线的左、右焦点,以原点
为极点,以
轴的正半轴为极轴建立极坐标系.
(1)求直线的直角坐标方程;
(2)经过点且与直线
垂直的直线
交此圆锥曲线于
、
两点,求
的值.
如图,在中,
是
的角平分线,
的外接圆交
于点
,
.
(Ⅰ)求证:;
(Ⅱ)当,
时,求
的长.
(本小题满分12分)已知函数,
.
(Ⅰ)时,证明:
;
(Ⅱ),若
,求a的取值范围.
已知椭圆的上顶点为
,直线
交椭圆于
两点,设直线
的斜率分别为
.
(1)若时,求
的值;
(2)若时,证明直线
过定点.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.
(Ⅰ)求恰有一个黑球的概率;
(Ⅱ)记取出红球的个数为随机变量,求
的分布列和数学期望
.