已知单调递增的等比数列满足:
,且
是
的等差中项.
(Ⅰ) 求数列的通项公式;
(Ⅱ) 若,
,求使
成立的正整数
的最小值.
(本小题满分10分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=
a,曲线C2的参数方程为
(φ为参数,0≤φ≤π).
(1)求C1的直角坐标方程;
(2)当C1与C2有两个不同公共点时,求实数a的取值范围.
(本小题满分10分)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且CA=8,PC=2,BD=9,求AD的长.
(本小题满分12分).已知函数f(x)=mlnx+(m-1)x(m∈R).
(1)求m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)若f(x)存在最大值M,且M>0,求m的取值范围.
(本小题满分12分)已知圆C1:x2+y2=r2截直线x+y-=0所得的弦长为
.抛物线C2:x2=2py(p>0)的焦点在圆C1上.
(1)求抛物线C2的方程;
(2)过点A(-1,0)的直线l与抛物线C2交于B,C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程.
(本小题满分12分)某数学老师对本校2015届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取了20名学生的成绩,分数用茎叶图记录如图:
得到频率分布如下:
分数段 |
[50, 70) |
[70, 90) |
[90, 110) |
[110, 130) |
[130, 150] |
总计 |
频数 |
b |
|||||
频率 |
a |
0.25 |
(1)求表中a,b的值,并估计这次考试全校学生数学成绩的及格率(分数在[90,150]范围内为及格);
(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.