(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
如图,在 中,以 为直径作 交 于点 , .
(1)求证: 是 的切线;
(2)点 是 上一点,若 , , 的半径是4,求 的长.
今年5月13日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:
做家务时间(小时) |
人数 |
所占百分比 |
组:0.5 |
15 |
|
组:1 |
30 |
|
组:1.5 |
|
|
组:2 |
3 |
|
合计 |
|
|
(1)统计表中的 , ;
(2)小君计算被抽查同学做家务时间的平均数是这样的:
第一步:计算平均数的公式是 ,
第二步:该问题中 , , , , ,
第三步: (小时)
小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;
(3)现从 , 两组中任选2人,求这2人都在 组中的概率(用树形图法或列表法).
已知关于 的一元二次方程: 有两个不相等的实数根.
(1)求 的取值范围;
(2)给 取一个负整数值,解这个方程.
如图,抛物线 与 轴交于 、 两点, 是 轴上一点,连接 ,延长 交抛物线于点 .
(1)求此抛物线的解析式;
(2)若 点在第一象限,过点 作 轴于点 , 与 的面积比为 ,求出点 的坐标;
(3)若 是 轴上的动点,过 点作与 轴平行的直线交抛物线于 、 两点,是否存在点 ,使 ?若存在,请求出点 的坐标;若不存在,请说明理由.
如图, 是 的直径, 是 的切线,切点为 , 是 上(除 点外)的任意一点,连接 交 于点 ,过点 作 交 的延长线于点 ,连接 并延长交 于点 .
(1)求证: ;
(2)若 ,求 的长度.