已知函数
(1)若函数的图象在点
处的切线的倾斜角为
(2)设的导函数是
,在(1)条件下,若
的最小值;
(3)若存在的取值范围.
已知集合,集合
,若
,求实数
的取值范围.
已知函数,
(1)在给定直角坐标系中画出函数的大致图象;(每个小正方形边长为一个单位长度);
(2)由图象指出函数的单调递增区间(不要求证明);
(3)由图象指出函数的值域(不要求证明).
计算下列各式的值:
(1);(2)
.
已知的定义域是[0,4].
(1)若f(x)的极值点是x=3,求a的值;
(2)若f(x)是单峰函数,求a的取值范围.
设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x•]上单调递增,在[x•,1]单调递减,则称f(x)为[0,1]上的单峰函数,x•为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2﹣x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).