已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点的直线l交椭圆于A,B两点,交直线
于点E,
判断
是否为定值,若是,计算出该定值;不是,说明理由.
(本小题满分13分)设函数的图象经过原点,在其图象上一点P(x,y)处的切线的斜率记为
.
(1)若方程=0有两个实根分别为-2和4,求
的表达式;
(2)若在区间[-1,3]上是单调递减函数,求
的最小值.
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k·3)+f(3
-9
-2)<0对任意x∈R恒成立,求实数k的取值范围.
已知函数是
上的奇函数,当
时,
,
(1)判断并证明在
上的单调性;
(2)求的值域;
(3)求不等式的解集。
已知函数的定义域为
,值域为
.试求函数
(
)的最小正周期和最值
在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且.
(1)若,求A、B、C的大小;
(2)已知向量的取值范围.