在平面直角坐标系中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
各有一个交点.当
时,这两个交点间的距离为2,当
时,这两个交点重合.
(1)分别说明是什么曲线,并求出
与
的值;
(2)设当时,
与
的交点分别为
,当
时,
与
的交点为
,求四边形
的面积.
如图,计算由曲线,直线x+y=3以及两坐标轴所围成的图形的面积S.
(本小题满分14分)已知函数,
(1)若函数在
上是减函数,求实数
的取值范围;
(2)令,是否存在实数
,当
(
是自然常数)时,函数
的最小值是
,若存在,求出
的值;若不存在,说明理由;
(3)求证:当时,
(本小题满分14分)设函数在两个极值点
,且
(1)求
满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点
的区域;
(2)证明:
(本小题满分14分)已知函数在
处有极值
.
(1)求常数、
;
(2)求曲线与
轴所包围的面积。
(本小题满分14分)某公司决定采用增加广告投入和技术改造投入两项措施来获得更大的收益.通过对市场的预测,当对两项投入都不大于3(百万元)时,每投入(百万元)广告费,增加的销售额可近似的用函数
(百万元)来计算;每投入x(百万元)技术改造费用,增加的销售额可近似的用函数
(百万元)来计算.现该公司准备共投入3(百万元),分别用于广告投入和技术改造投入,请设计一种资金分配方案,使得该公司的销售额最大. (参考数据:≈1.41,≈1.73)