设,求证:
已知点、直线与相交于点且直线斜率与直线的斜率之差为点的轨迹为曲线. (1)求曲线的轨迹方程; (2)为直线上的动点,过做曲线的切线,切点分别为˴求的面积的最小值.
如图1,等腰梯形中,是的中点,如图2将沿折起,使面面连接是棱上的动点. (1)求证: (2)若当为何值时,二面角的大小为
已知数列是等差数列,是等比数列,其中且为、的等差中项,为、的等差中项. (1)求数列与的通项公式; (2)记,求数列的前项和.
在中,所对的边分别为函数在处取得最大值. (1)当时,求函数的值域; (2)若且,求的面积.
已知 当时,求函数的单调区间; 设,当时,若对任意,存在,使,求实数取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号