(1)设,求证:
(2)已知正数x、y满足2x+y=1,求的最小值及对应的x、y值.
(3)已知实数满足
,
的最大值及对应的x、y、z值.
已知函数,求函数
的值域 (2)求不等式:
的解集.
已知曲线:
(
为参数),
:
(
为参数).
(1)化,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点
对应的参数为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.
已知函数。
(Ⅰ)求函数的图像在
处的切线方程;
(Ⅱ)求的最大值;
(Ⅲ)设实数,求函数
在
上的最小值
已知直线与椭圆
相交于
、
两点.
(1)若椭圆的离心率为,焦距为
,求线段
的长;
(2)若向量与向量
互相垂直(其中
为坐标原点),当椭圆的离心率
时,求椭圆长轴长的最大值.
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
分组 |
频数 |
频率 |
[40,50) |
2 |
|
[50,60) |
3 |
|
[60,70) |
10 |
|
[70,80) |
15 |
|
[80,90) |
12 |
|
[90,100] |
8 |
|
合计 |
50 |