(本小题满分14分)对于函数,若存在
,使
,则称
是
的一个不动点,已知函数
,
(1)当时,求函数
的不动点;
(2)对任意实数,函数
恒有两个相异的不动点,求
的取值范围;
(3)在(2)的条件下,若的图象上
两点的横坐标是
的不动点,且
两点关于直线
对称,求
的最小值
如图,在边长为10的正三角形纸片ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形纸片后,顶点A正好落在边BC上(设为P),在这种情况下,求AD的最小值.
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求三棱锥P-DEF的体积.
已知点A(3,0),B(0,3),C(,
),
∈
.
(1)若=
,求角
的值;
(2)若=-1,求
的值.
函数,其图象在
处的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)若函数的图象与
的图象有三个不同的交点,求实数
的取值范围;
(Ⅲ)是否存在点P,使得过点P的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P点的坐标;若不存在,说明理由.
已知二次函数的图像过
点
,且
,
.
(Ⅰ)求的解析式;
(Ⅱ)若数列满足
,且
,求数列
的通项公式;
(Ⅲ)记,
为数列
的前
项和.求证:
.