(本小题满分14分)对于函数,若存在
,使
,则称
是
的一个不动点,已知函数
,
(1)当时,求函数
的不动点;
(2)对任意实数,函数
恒有两个相异的不动点,求
的取值范围;
(3)在(2)的条件下,若的图象上
两点的横坐标是
的不动点,且
两点关于直线
对称,求
的最小值
数列{an}满足a1=2,对于任意的n∈N*都有an>0,且(n+1)an2+an·an+1-nan+12=0,又知数列{bn}的通项为bn=2n-1+1.
(1)求数列{an}的通项an及它的前n项和Sn;
(2)求数列{bn}的前n项和Tn;
(3)猜想Sn与Tn的大小关系,并说明理由.
{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)
(1)求证:当k取不同自然数时,此方程有公共根;
(2)若方程不同的根依次为x1,x2,…,xn,…,
求证:数列为等差数列.
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.
已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列
a,a
,…,a
,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+C
b2+C
b3+…+C
bn,求
.
设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.