(本题12分)已知关于的不等式
的解集为
.
(1)若,求集合
;
(2)若且
,求实数
的取值范围.
(本小题满分14分)如图,已知矩形ABCD的边AB="2" ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
(本小题满分12分)某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为
,
(
>
),且不同种产品是否受欢迎相互独立。记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
![]() |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)求该公司至少有一种产品受欢迎的概率;
(2)求,
的值;
(3)求数学期望。
(本小题满分12分)设,且
满足
(1)求的值.(2)求
的值.
已知函数.(
为常数)
(1)当时,求函数
的最小值;
(2)求函数在
上的最值;
(3)试证明对任意的都有
已知椭圆的离心率为
,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆的方程;
(2)若斜率为的直线
与椭圆
交于
、
两点,点
为椭圆
上一点,记直线
的斜率为
,直线
的斜率为
,试问:
是否为定值?请证明你的结论