《选修4-4:坐标系与参数方程》已知直线L的参数方程: (t为参数)和圆C的极坐标方程:
(θ为参数).
(1)求圆C的直角坐标方程.
(2)判断直线L和圆C的位置关系.
设函数,
为常数
.
(1)若的图象中相邻两对称轴之间的距离不小于
,求
的取值范围;
(2)若的最小正周期为
,且当
时,
的最大值是
,又
,求
的值.
已知在同一平面内,且
.
(1)若,且
,求
的值;
(2)若,且
,求向量
与
的夹角.
一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.
(1)求搅匀后从中任意摸出1个球,恰好是红球的概率;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,求至少有一次摸出的球是红球的概率.
在等差数列中,
,
.令
,数列
的前
项和为
.
(1)求数列的通项公式;
(2)求数列的前
项和
;
(3)是否存在正整数,
(
),使得
,
,
成等比数列?若存在,求出所有的
,
的值;若不存在,请说明理由.
在中,角
的对边分别为
,且
(Ⅰ)求的值;
(Ⅱ)若,
,求向量
在
方向上的投影.