(本小题满分13分)已知平面平面
,四边形
是矩形,
,
、
分别是
、
的中点,主(正)视图方向垂直平面
时,左(侧)视图的面积为
.
(1)求证:∥平面
;
(2)求证:平面平面
.
(本小题满分12分)
如图,已知,
分别是正方形
边
、
的中点,
与
交于点
,
、
都垂直于平面
,且
,
,
是线段
上一动点.
(Ⅰ)求证:平面平面
;
(Ⅱ)试确定点的位置,使得
平面
;
(Ⅲ)当是
中点时,求二面角
的余弦值.
(本小题满分12分)
已知函数(
>0,0<
)的最小正周期为
,且
.
(1)求的值;
(2)若
函数
(Ⅰ)当时,求f(x)的单调区间;
(Ⅱ)若,若
分别为
的极大值和极小值,若
,求
取值范围。
已知椭圆:
的右顶点为
,过
的焦点且垂直长轴的弦长为
.
(I)求椭圆的方程;
(II)设抛物线:
的焦点为F,过F点的直线
交抛物线与A、B两点,过A、B两点分别作抛物线
的切线交于Q点,且Q点在椭圆
上,求
面积的最值,并求出取得最值时的抛物线
的方程。
,定义
,其中n∈N*.
(Ⅰ)求的值,并求证:数列{an}是等比数列;
(II)若,其中n∈N*,试比较9
与
大小,并说明理由.