(本小题满分12分)已知 ,
.
求下列式子的值
(1); (2)
(3)
(本小题满分12分)
某校高二年级共有1200名学生,为了分析某一次数学考试情况,今抽查100份试卷,成绩分布如下表:
成绩 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
4 |
5 |
6 |
9 |
21 |
27 |
15 |
9 |
4 |
频率 |
0.04 |
0.05 |
0.06 |
0.09 |
0.21 |
0.27 |
0.15 |
0.09 |
0.04 |
(Ⅰ)画出频率分布直方图;
![]() |
![]() |
(Ⅱ)由频率分布表估计这次考试及格(60分以上为及格)的人数;
(Ⅲ)由频率分布直方图估计这考试的平均分.
(本小题满分10分)
(1)用辗转相除法求840与1764的最大公约数.
(2)用更相减损术求与
的最大公约数
已知点P(-1,)是椭圆E:
(
)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆E的离心率;
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.
((本小题满分12分)
已知点,一动圆过点
且与圆
内切.
(1)求动圆圆心的轨迹的方程;
(2)设点,点
为曲线
上
任一点,求点
到点
距离的最大值
;
(3)在的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
使得
恒成立,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
( (本题满分12分)
在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知
只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是.,每次命中与否互相独立.
(1)求油罐被引爆的概率。
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望。