游客
题文

(本小题满分13分)已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)求上的最大值与最小值.

科目 数学   题型 解答题   难度 较易
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值..

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.

(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.

(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.

(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin θρcos=2.
(1)求C1C2交点的极坐标;
(2)设PC1的圆心,QC1C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求ab的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号