(本小题满分13分)已知函数,
.
(Ⅰ)若,对于任意的
,求证:
;
(Ⅱ)若函数在其定义域内不是单调函数,求实数
的取值范围.
已知首项为
的等比数列
不是递减数列,其前
项和为
,且
成等差数列.
(1)求数列
的通项公式;
(2)设
,求数列
的最大项的值与最小项的值.
设椭圆
的左焦点为F,离心率为
,过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆的方程;
(2)设
分别为椭圆的左,右顶点,过点
且斜率为
的直线与椭圆交于
两点.若
,求
的值.
如图,四棱柱
中,侧棱
,
,
,
,
,
为棱
的中点.
(1)证明
;
(2)求二面角
的正弦值.
(3)设点
在线段
上,且直线
与平面
所成角的正弦值为
,求线段
的长.
一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)再取出的4张卡片中,红色卡片编号的最大值设为
,求随机变量
的分布列和数学期望.
已知函数
.
(1)求
的最小正周期;
(2)求
在区间
上的最大值和最小值.