(本小题满分12分)已知等比数列的首项
,公比
,数列
前
项的积记为
.
(1)求使得取得最大值时
的值;
(2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为
,证明:数列
为等比数列.(参考数据
)
(本小题14分)
已知函数的图象过点(0,1),当
时,
的最大值为
。
(1)求的解析式;
(2)写出由经过平移变换得到的一个奇函数
的解析式,并说明变化过程
(本小题14分)
某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
(本小题12分)
已知,
,当
为何值时,
(1) 与
垂直?
(2) 与
平行?平行时它们是同向还是反向?
(本小题12分)
已知, 计算:
(1) ; (2)
数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(1)求数列的通项公式;
(2)设数列的前
项和为
,且
,求证:对任意实数
是常数,