(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。
(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求
的分布列和数学期望.
已知函数,
(1)若,求函数
的最大值与最小值及此时x的值;
(2)若,且
,求
的值.
如图,某小区准备绿化一块直径为的半圆形空地,
外的地方种草,
的内接正方形
为一水池,其余地方种花.若
,设
的面积为
,正方形
的面积为
,将比值
称为“规划合理度”.
(1)试用表示
和
.(2)当
变化时,求“规划合理度”取得最小值时的角
的大小.
甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球,现在从甲、乙两袋中各取出2个球。(I)求取得的4个球均是白球的概率;(II)求取得白球个数的数学期望
已知.
(1)分别求与
的值;(2)求
的值.
(本小题满分14分)已知数列的前n项和为
,且
(1)求数列的通项公式;(2)设数列
满足:
,且
,求证:
;(3)求证:
。