如图,某小区准备绿化一块直径为的半圆形空地,
外的地方种草,
的内接正方形
为一水池,其余地方种花.若
,设
的面积为
,正方形
的面积为
,将比值
称为“规划合理度”.
(1)试用表示
和
.(2)当
变化时,求“规划合理度”取得最小值时的角
的大小.
(本小题满分12分)若函数满足:对定义域内任意两个不相等的实数
,都有
,则称函数
为H函数.已知
,且
为偶函数.
(1) 求的值;
(2) 求证:为H函数;
(3) 试举出一个不为H函数的函数,并说明理由.
(本小题满分12分)如图:A、B两城相距100 km,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气. 已知D地距A城x km,为保证城市安全,天燃气站距两城市的距离均不得少于10km . 已知建设费用y (万元)与A、B两地的供气距离(km)的平方和成正比,当天燃气站D距A城的距离为40km时, 建设费用为1300万元.(供气距离指天燃气站距到城市的距离)
(1)把建设费用y(万元)表示成供气距离x (km)的函数,并求定义域;
(2)天燃气供气站建在距A城多远,才能使建设供气费用最小.,最小费用是多少?
(本小题满分12分)求经过直线与直线
的交点M,且分别满足下列条件的直线方程:
(1)与直线平行;(2)与直线
垂直.
设cos=-
,tan
=
,
<
<
, 0<
<
求
-
的值
.(本小题满分14分)已知函数对任意实数
均有
,当
时,
是正比例函数,当
时,
是二次函数,且在
时
取最小值
。
(1)证明:;
(2)求出在
的表达式;并讨论
在
的单调性。