已知椭圆C:,⊙, 点,分别是椭圆的左顶点和左焦点,点不是上的点,点是上的动点.(1)若,是的切线,求椭圆的方程;(2)是否存在这样的椭圆,使得恒为常数?如果存在,求出这个数及的离心率;如果不存在,说明理由.
(本小题满分12分) 已知向量,,,且、、分别为的三边、、所对的角。 (Ⅰ)求角C的大小; (Ⅱ)若,,成等差数列,且,求边的长。
(本小题满分10分) 设命题:实数x满足,其中,命题实数满足. (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若是的必要不充分条件,求实数的取值范围.
已知函数在R上有定义,对任意实数,和任意实数,都有 (1)求的值; (2)证明:其中和均为常数; (3)当(2)中的时,设,讨论在内的单调性并求最小值。
函数的最小值为 (1)求 (2)若,求及此时的最大值。
解关于的不等式(
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号