(本小题满分15分)
已知圆过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,
是否为一定值?请证明你的结论.
(3)当圆心在抛物线上运动时,记
,
,求
的最大值,并求出此时圆
的方程.
设平面直角坐标系中,设二次函数
的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,
(1)求证;
(2)求异面直线AC1与B1C所成角的余弦值.
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.
根据下列条件求直线方程
(1)过点(2,1)且倾斜角为的直线方程;
(2)过点(-3,2)且在两坐标轴截距相等的直线方程.
(14分)如图①,直角梯形中,
,点
分别在
上,且
,现将梯形
A沿
折起,使平面
与平面
垂直(如图②).
(1)求证:平面
;
(2)当时,求二面角
的大小.