已知:如图,矩形ABCD中,CD=2,AD=3,以C点为圆心,作一个动圆,与线段AD交于点P(P和A、D不重合),过P作⊙C的切线交线段AB于F点.
(1)求证:△CDP∽△PAF;
(2)设DP=x,AF=y,求y关于x的函数关系式,及自变量x的取值范围;
(3)是否存在这样的点P,使△APF沿PF翻折后,点A落在BC上,请说明理由.
如图,四边形 中,连接 , ,以 为直径的 过点 ,交 于点 ,过点 作 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.(结果保留
如图,某地质公园中有两座相邻小山.游客需从左侧小山山脚 处乘坐竖直观光电梯上行100米到达山顶 处,然后既可以沿水平观光桥步行到景点 处,也可以通过滑行索道到达景点 处,在山顶 处观测坡底 的俯角为 ,观测 处的俯角为 ,已知右侧小山的坡角为 (图中的点 , , , , , 均在同一平面内,点 , , 在同一直线上)
(1)求 的度数及 的长度;
(2)求 , 两点之间的距离.(结果保留根号)
俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校计划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.
(1)求甲、乙两种品牌的足球的单价各是多少元?
(2)学校准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?
自我省深化课程改革以来,铁岭市某校开设了: .利用影长求物体高度, .制作视力表, .设计遮阳棚, .制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.
根据图中信息解决下列问题:
(1)本次共调查 名学生,扇形统计图中 所对应的扇形的圆心角为 度;
(2)补全条形统计图;
(3)选修 类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.
如图,在平面直角坐标系中,抛物线 经过点 和点 ,抛物线 ,动直线 与抛物线 交于点 ,与抛物线 交于点 .
(1)求抛物线 的表达式;
(2)直接用含 的代数式表示线段 的长;
(3)当 是以 为直角边的等腰直角三角形时,求 的值;
(4)在(3)的条件下,设抛物线 与 轴交于点 ,点 在 轴右侧的抛物线 上,连接 交 轴于点 ,连接 ,在平面内有一点 ,连接 和 ,当 且 时,请直接写出点 的坐标.