已知椭圆经过点,其离心率为,设直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与圆相切,求证:(为坐标原点);(Ⅲ)以线段为邻边作平行四边形,若点在椭圆上,且满足(为坐标原点),求实数的取值范围.
如图,是圆的直径,垂直于圆所在的平面,是圆上的点. (1)求证:平面平面; (2)若,求二面角的余弦值.
已知函数对任意满足,,若当时,(且),且. (1)求实数的值; (2)求函数的值域.
已知函数. (1)当时,求曲线在点(1,f(1))处的切线方程; (2)当时,若f(x)在区间[1,e]上的最小值为-2,求的值; (3)若对任意,且恒成立,求的取值范围.
已知函数定义在上,对任意的,,且. (1)求,并证明:; (2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.
在锐角中,内角A,B,C的对边,已知,. (1)若的面积等于,求; (2)求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号