如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
已知. (1)求函数的单调区间; (2)若关于的方程有实数解,求实数的取值范围; (3)当,时,求证:.
函数是定义在上的奇函数,且. (1)确定函数的解析式; (2)用定义法证明函数在上是增函数; (3)解不等式.
已知函数在区间上的最大值是2,求实数的值.
已知,设命题:函数为减函数.命题:当时,函数恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围.
数列满足 (1)证明:数列是等差数列; (2)求数列的通项公式; (3)设,求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号