(本小题满分12分)已知函数.
(1)当时,求函数
的最小值;
(2)若对任意的,
恒成立,试求实数
的取值范围.
(本小题满分10分)在中,角
所对的边分别为
、
、
,且
.(Ⅰ)求
的值;(Ⅱ)若
,求
的最大值.
(本小题满分12分)设函数
(1)当时,求函数
的最大值;
(2)令,(
)其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当,
,方程
有唯一实数解,求正数
的值.
(本小题满分12分)已知椭圆的左右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
;证明:
为定值;
(本小题满分12分)如图,、
分别是正三棱柱
的棱
、
的中点,且棱
,
.
(Ⅰ)求证:平面
;
(Ⅱ)在棱上是否存在一点
,使二面角
的大小为
,若存在,求
的长;若不存在,说明理由。
(本小题满分12分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投次:在
处每投进一球得
分,在
处每投进一球得
分;如果前两次得分之和超过
分即停止投篮,否则投第三次.某同学在
处的命中率
为
,在
处的命中率为
,该同学选择先在
处投一球,以后都在
处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
![]() |
0 |
2 |
3 |
4 |
5 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1) 求的值;
(2) 求随机变量
的数学期望
;
(3) 试比较该同学选择都在处投篮得分超过
分与选择上述方式投篮得分超过
分的概率的大小.