(本小题满分12分)2014年APEC峰会于11月10-11日在北京召开.据志愿服务联合会的统计显示:APEC领导人会议周期间,2000名志愿者共上岗服务11219人次,累计服务132022小时,所有的志愿者来自全国四大地理区域,数据如下表所示:
地理区域 |
北方地区 |
南方地区 |
西北地区 |
青藏地区 |
志愿者人数 |
600 |
800 |
400 |
200 |
为了更进一步了解有关信息,采用分层抽样的方法从上述四大地理区域的志愿者中随机抽取50名参加问卷调查.
(Ⅰ)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一地理区域的概率;
(Ⅱ)在参加问卷调查的50名志愿者中,从来自北方地区、西北地区的志愿者中随机抽取两名,用表示抽得北方地区志愿者的人数,求
的分布列和数学期望.
(本小题满分10分)选修4-1:几何证明选讲
如图,四边形是⊙
的内接四边形,延长
和
相交于点
,
,
.
(Ⅰ)求的值;
(Ⅱ)若为⊙
的直径,且
,求
的长.
(本小题满分12分)设函数,曲线
过点
,且在点
处的切线方程为
.
(Ⅰ)求,
的值;
(Ⅱ)证明:当时,
;
(Ⅲ)若当时,
恒成立,求实数
的取值范围.
(本小题满分12分)如图,抛物线:
与椭圆
:
在第一象限的交点为
,
为坐标原点,
为椭圆的右顶点,
的面积为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点作直线
交
于
、
两点,求
面积的最小值.
(本小题满分12分)为等腰直角三角形,
,
,
、
分别是边
和
的中点,现将
沿
折起,使面
面
,
是边
的中
点,平面与
交于点
.
(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积.
(本小题满分12分)已知数列满足
,
,令
.
(Ⅰ)证明:数列是等差数列;
(Ⅱ)求数列的通项公式.