(本小题满分12分)已知四边形满足
∥
,
,
是
的中点,将
沿着
翻折成
,使面
面
.
(Ⅰ)求四棱锥的体积;
(Ⅱ)设点在线段
上,且
,在线段
上是否存在点
,使得
∥面
;若不存在,请说明理由.
(本小题满分12分)已知椭圆,其中
为左、右焦点,且离心率
,直线
与椭圆交于两不同点
.当直线
过椭圆C右焦点F2且倾斜角为
时,原点O到直线
的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若,当
面积为
时,求
的最大值.
(本小题满分12分)已知直线,双曲线
.①若直线
与双曲线
的其中一条渐近线平行,求双曲线
的离心率;②若直线
过双曲线的右焦点
,与双曲线交于
、
两点,且
,求双曲线方程。
(本小题满分12分).已知椭圆经过点
,离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)不过原点的直线与椭圆
交于
两点,若
的中点
在抛物线
上,求直线
的斜率
的取值范围.
(本小题满分12分).已知双曲线与椭圆
有共同的焦点,点
在双曲线
上.
(Ⅰ)求双曲线的方程;
(Ⅱ)以为中点作双曲线
的一条弦
,求弦
所在直线的方程.
(本小题满分12分)已知圆:
,直线
(Ⅰ)判断直线与圆
的位置关系。
(Ⅱ)若直线与圆
交于不同两点
,且
=3
,求直线
的方程。