【选修4—1几何证明选讲】(本小题满分10分)
如图,在△ABC中,CM是∠ACB的平分线,△AMC的外接圆O交BC于点N. 若AB=2AC,
求证:BN=2AM.
已知函数,
.
(1)若函数在
上单调递增,求实数
的取值范围;
(2)若直线是函数
图象的切线,求
的最小值;
(3)当时,若
与
的图象有两个交点
,求证:
.
(取为
,取
为
,取
为
)
【原创】设函数
(1)设且对于任意非零实数
,都有
成等比数列,求
的解析式;
(2)设
①若求证:
;
②若为正项等比数列,求
的值.
在平面直角坐标系中,已知过点
的椭圆
:
的右焦点为
,过焦点
且与
轴不重合的直线与椭圆
交于
,
两点,点
关于坐标原点的对称点为
,直线
,
分别交椭圆
的右准线
于
,
两点.
(1)求椭圆的标准方程;
(2)若点的坐标为
,试求直线
的方程;
(3)记,
两点的纵坐标分别为
,
,试问
是否为定值?若是,请求出该定值;若不是,请说明理由.
如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形
构成,其中
为
的中点.现准备在公园里建设一条四边形健康跑道
,按实际需要,四边形
的两个顶点
分别在线段
上,另外两个顶点
在半圆上,
,且
间的距离为1km.设四边形
的周长为
km.
(1)若分别为
的中点,求
长;
(2)求周长的最大值.