节日期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段后得到如下图所示的频率分布直方图.
(Ⅰ)此调查公司在采样中用到的是什么抽样方法?
(Ⅱ)求这40辆小型车辆车速的众数和中位数的估计值.
(Ⅲ)若从车速在的车辆中任抽取2辆,求抽出的2辆车中车速在
的车辆数
的分布列及
数学期望.
(本小题满分12分)
设函数.
(Ⅰ)求的最小值
;
(Ⅱ)若对
恒成立,求实数
的取值范围.
(本小题满分12分)
如图,直三棱柱的底面
位于平行四边形
中,
,
,
,点
为
中点.
(1)求证:平面平面
.
(2)设二面角
的大小为
,直线
与平面
所成的角为
,求
的值.
(本小题满分12分)
已知实数列等比数列,其中
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)数列的前
项和记为
证明:
<128
…).
(本小题满分12分)
甲、乙两名跳高运动员一次试跳
米高度成功的概率分别是
,
,且每次试跳成功与否相互之间没有影响,求:
(Ⅰ)甲试跳三次,第三次才成功的概率;
(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;
(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
(本小题满分10分)
在中,
,
.
(Ⅰ)求角的大小;
(Ⅱ)若边的长为
,求
边的长.