已知椭圆的中心为原点,焦点在轴上,离心率为
,且经过点
,直线
交椭圆于异于M的不同两点
.直线
轴分别交于点
.
(1)求椭圆标准方程;
(2)求的取值范围;
(3)证明是等腰三角形.
某种有奖销售的饮料,瓶盖内印有"奖励一瓶"或"谢谢购买"字样,购买一瓶若其瓶盖内印有"奖励一瓶"字样即为中奖,中奖概率为
.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;
(Ⅱ)求中奖人数
的分布列及数学期望
.
设函数 ,其中 ,曲线 在点 处的切线方程为 .
(Ⅰ)确定
的值.
(Ⅱ)设曲线
在点(
)及(
)处的切线都过点(0,2)证明:当
时,
.
(Ⅲ)若过点(0,2)可作曲线 的三条不同切线,求 的取值范围.
已知某地今年年初拥有居民住房的总面积为
(单位:
),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的
建设新住房,同事也拆除面积为
(单位:
)的旧住房。
(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:
(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了
,则每年拆除的旧住房面积
是多少?(计算时取
)
如图,在四面体 中, 。 , ,且
(Ⅰ)设
为
的中点,
在
上且
,证明:
;
(Ⅱ)求二面角
的平面角的余弦值。
为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)
(Ⅰ)在答题卡上的表格中填写相应的频率;
(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;
(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。