在数列中,
,且对任意的
,
成等比数列,其公比为
.
(1)若=2(
),求
;
(2)若对任意的,
,
,
成等差数列,其公差为
,设
.
①求证:成等差数列,并指出其公差;
②若=2,试求数列
的前
项的和
.
已知矩阵A=,B=
,求矩阵A-1B.
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.
求证:∠E=∠C.
如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1)k-1k,…,即当<n≤
(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*).对于l∈N*,定义集合Pl={n|Sn是an的整数倍,n∈N*,且1≤n≤l}.
(1)求集合P11中元素的个数;
(2)求集合P2 000中元素的个数.
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).