(本小题满分10分)【选修4-1:几何证明选讲】如图,为直角三角形,,以AB为直径的圆交AC于点E,点D是BC边的中点,连接OD交圆O于点M,求证:(Ⅰ)O、B、D、E四点共圆;(Ⅱ).
若x,y都是正实数,且x+y>2, 求证:<2与<2中至少有一个成立.
计算: (1); (2); (3)+; (4) .
函数f(x)=ax3-2bx2+cx+4d (a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值为-. (1)求a,b,c,d的值; (2)证明:当x∈[-1,1]时,图象上不存在两点使得过此两点处的切线互相垂直; (3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤.
函数y=,写出求该函数值的算法及流程图.
设f(x)=ax2+bx+c(a≠0),若函数f(x+1)与f(x)的图象关于y轴对称.求证:f(x+)为偶函数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号