在中,
,
,直线
经过点
,且
于
,
于
.
(1)当直线绕点
旋转到图1的位置时,求证:
①≌
;
②;
(2)当直线绕点
旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需
要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.
⑴问乙单独整理多少分钟完工?
⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
(本小题满分8分)如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,
2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所
指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).
⑴若小静转动转盘一次,求得到负数的概率;
⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.
(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点
O和△ABC的顶点均为小正方形的顶点.
⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)
(本小题满分8分)
已知是关于x,y的二元一次方程
的解.求(a+1)(a-1)+7的值
如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.