(本小题满分13分)对于定义域为D的函数,若同时满足下列条件:①
在D内单调递增或单调递减;②存在区间[
]
,使
在[
]上的值域为[
];那么把
(
)叫闭函数。
(1)求闭函数符合条件②的区间[
];
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数
的取值范围。
(本小题满分14分)已知.
(1)求函数的单调区间;
(2)求函数在
上的最小值;
(3)对一切的,
恒成立,求实数
的取值范围.
(本小题满分12分)已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为
, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
.
(1)求椭圆方程;
(2)求的取值范围.
(本小题满分12分)已知直三棱柱中,
,
,点
在
上.
(1)若是
中点,求证:
∥平面
;
(2)当时,求二面角
的余弦值.
(本小题满分12分)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第号卡片恰好落入第
号小盒中,则称其为一个匹对,用
表示匹对的个数.
(1)求第2号卡片恰好落入第2号小盒内的概率;
(2)求匹对数的分布列和数学期望
.
(本小题满分12分)
设函数,其中向量
.
(1)求函数的最小正周期和在
上的单调递增区间;
(2)中,角
所对的边为
,且
,求
的取值范围.