如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.
(1)求证:FB=FD;
(2)如图2,连接AE,求证:AE∥BD;
(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD。
.如图(1),在直角△ABC中, ∠ACB=90,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数).
试探究线段EF与EG的数量关系.
(1)如图(2),当m=1,n=1时,EF与EG的数量关系是
证明:
(2)如图(3),当m=1,n为任意实数时,EF与EG的数量关系是
证明
(3)如图(1),当m,n均为任意实数时,EF与EG的数量关系是
(写出关系式,不必证明)
.如图13,D为O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是O的切线;
(2)过点B作O的切线交CD的延长线于点E,若BC=6,tan∠CDA=
,求BE的长
选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分。
题甲:已知关于的方程
的两根为
、
,且满足
.求
的值。
题乙:如图12,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4.
(1)求证:AC⊥BD
(2)求△AOB的面积
我选做的是题
在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同。小明先从口袋里随机不放回地取出一个小球,记下数字为;小红在剩下有三个小球中随机取出一个小球,记下数字
。
(1)计算由、
确定的点(
,
)在函数
图象上的概率;
(2)小明、小红约定做一个游戏,其规则是:若、
满足
,则小明胜;若
、
满足
,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?
.某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
x(页) |
100 |
200 |
400 |
1000 |
… |
y(元) |
40 |
80 |
160 |
400 |
(1)若与
满足初中学过的某一函数关系,求函数的解析式;
(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。则乙复印社每月收费(元)与复印页数
(页)的函数关系为;
(3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?