某公司欲招聘业务员一名,现对A、B、C三名候选人分别进行笔试、面试测试,成绩如下表:
测试项目 |
测试成绩 |
||
甲 |
乙 |
丙 |
|
笔试 |
75 |
85 |
90 |
面试 |
93 |
75 |
72 |
(1)如果按照三人测试成绩的平均成绩录取人选,那么谁将被录用?
(2)根据实际需要,公司想将丙录用,请兼顾笔试、面试两个方面,你确定的方案是什么?写出理由.
小明在解一元二次方程时,发现有这样一种解法:
如:解方程.
解:原方程可变形,得.
,
,
.
直接开平方并整理,得.
我们称小明这种解法为“平均数法”.
(1)下面是小明用“平均数法”解方程时写的解题过程.
解:原方程可变形,得.
,
.
直接开平方并整理,得¤.
上述过程中的“”,“
” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____.
(2)请用“平均数法”解方程:.
如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点, 以OA为半径的⊙O经过点D。
(1)求证: BC是⊙O切线;
(2)若BD="5," DC="3," 求AC的长。
已知:关于的一元二次方程
.
(1)求证:不论取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根满足
,求
的值.
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1) 直接写出点M及抛物线顶点P的坐标;
(2) 求出这条抛物线的函数解析式;
(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
如图,在Rt△ABC中,∠C=90°,O是斜边AB上的中点,AE=CE,BF∥AC.
(1)求证:△AOE≌△BOF;
(2)求证:四边形BCEF是矩形.