某中学校本课程共开设了共
门选修课,每个学生必须且只能选修
门选修课,现有该校的甲、乙、丙
名学生.
(Ⅰ)求这名学生选修课所有选法的总数;
(Ⅱ)求恰有门选修课没有被这
名学生选择的概率;
(Ⅲ)求选修课被这
名学生选择的人数
的分布列和数学期望.
在△ABC中,已知,
,B=45°求A、C及c
已知:,当
时,
;
时,
(1)求的解析式
(2)c为何值时,的解集为R.
已知函数
(I) 解关于的不等式
(II)若函数的图象恒在函数
的上方,求实数
的取值范围。
以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线
过点P,且倾斜角为
,圆C以M为圆心,4为半径。
(I)求直线的参数方程和圆C的极坐标方程。
(II)试判定直线与圆C的位置关系。
如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。
(I)求证:∠PFE=∠PAB(II)求证:CD2=CF·CP