(本小题满分13分)设函数的定义域为
,并且满足
,且
,当
时,
(1)求的值;
(2)判断函数的奇偶性;
(3)如果,求
的取值范围.
(本小题满分10分)
已知等差数列{},
为其前n项的和,
=0,
=6,n∈N*.
(I)求数列{}的通项公式;
(II)若=3
,求数列{
}的前n项的和.
已知函数.
(I)求函数的单调区间;
(Ⅱ)函数在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由;
(Ⅲ)若任意的∈(1,2)且
≠
,证明:
(注:
(本小题满分12分)已知焦点在轴上的椭圆C1:
=1经过A(1,0)点,且离心率为
.
(I)求椭圆C1的方程;
(Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与
轴平行时,求h的最小值.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分别是PA、BC的中点.
(I)求证:MN∥平面PCD;
(II)在棱PC上是否存在点E,使得AE上平面PBD?若存在,求出AE与平面PBC所成角的正弦值,若不存在,请说明理由
(本小题满分12分)某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:
(I)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
(II)从专业A中随机抽取2名学生,记其中女生的人数为X,求X的分布列和均值.
注: