若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3),
(1)求当x∈[1,2]时,f(x)的解析式;
(2)定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.
已知函数,若存在
,则
称是函数的一个不动点,设
(Ⅰ)求函数的不动点;
(Ⅱ)对(Ⅰ)中的二个不动点、
(假设
),求使
恒成立的常数的值;
已知函数y=f(x)=(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<
.试求函数f(x)的解析式
已知集合A={x| x2-3x-10≤0},B={x| m+1≤x≤2m-1},若AB且B≠
,求实数m的取值范围。
设全集,集合
,集合
(Ⅰ)求集合与
; (Ⅱ)求
、