在圆上任取一点
,过点
作
轴的垂线段
,
为垂足,当点
在圆上运动时,设线段
的中点
的轨迹为
(1)写出点的轨迹
方程;
(2)设直线与轨迹
交于
两点,当
为何值时,
?
(1)已知,
,求
的值.
(2)已知求
的值。
已知,
,
与
的夹角为
,
(1)求(2)求
(3)若向量
与
互相垂直,求
的值.
已知
为正实数,
为自然数,抛物线
与
轴正半轴相交于点
,设
为该抛物线在点
处的切线在
轴上的截距。
(Ⅰ)用
和
表示;
(Ⅱ)求对所有
都有
成立的
的最小值;
(Ⅲ)当
时,比较
与
的大小,并说明理由。
如图,动点 与两定点 、 构成 ,且直线 的斜率之积为4,设动点 的轨迹为 。
(Ⅰ)求轨迹
的方程;
(Ⅱ)设直线
与
轴交于点
,与轨迹
相交于点
,且
,求
的取值范围。
已知数列
的前
项和为
,常数
,且
对一切正整数
都成立.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,
,当
为何值时,数列
的前
项和最大?