数学活动——“关于三角形全等的条件”
1.【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
2.【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
3.【逐步探究】
(1)第一种情况:当∠B是直角时,如图①,根据______定理,可得△ABC≌△DEF.
(2)第二种情况:当∠B是钝角时,△ABC≌△DEF仍成立.请你完成证明.
已知:如图②,△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
证明:
(3)第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
4.【深入思考】
∠B还要满足什么条件,就可以使△ABC≌△DEF?(请直接写出结论.)
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B _________,则△ABC≌△DEF.
、如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.
证明:(1)CF=EB.(2)AB=AF+2EB
如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.
求证:(1)AM⊥DM;(2)M为BC的中点.
在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.
(1)若∠ABE=40°,求∠EBC的度数;
(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.
(6分) 如图已知△ABC,
(1)分别画出于△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;
(2)求△ABC的面积.
抛物线与x轴交于A ,B两点,且点A在点B的左侧,与y轴交于点C。
(1)当OB=OC时,求此时抛物线函数解析式;
(2)当为等腰三角形时,求m的值;
(3)若点P与点Q
在(1)中抛物线上,
求
的值.